

Classic Solar; EnerSol, EnerSol T, OPzS Solar

Instrucciones de uso Baterías estacionarias abiertas de plomo-ácido

Valores nominales:

Tensión nominal U_N

Capacidad nominal $C_N = C_{120}$

Intensidad nominal de descarga $I_N = I_{120}$

Tensión final de descarga U_f

Temperatura nominal T_N

: 2.0 V x número de elementos

: Descarga de 120h (ver tipo de placa y datos técnicos en estas instrucciones)

: ver datos técnicos en estas instrucciones

: 25 °C

Montaje realizado por:	Ref. pedido Exide Technologies:	Fecha:
Puesta en servicio por:		Fecha:
Señalización de seguridad efectuada por:		Fecha:

- Siga atentamente estas instrucciones y manténgalas expuestas cerca de la batería para futuras referencias.
- Los trabajos en la batería sólo deben ser ejecutados por personal cualificado.

No debe producirse en las proximidades ningún tipo de llama o chispa. ¡Peligro de incendio y explosión!

¡Cualquier manipulación que se efectúe en el acumulador debe realizarse provisto de gafas y traje de protección! Observe atentamente las normativas de seguridad así como EN 50272-2, DIN VDE 0510.

En caso de contacto del ácido con los ojos o la piel, aclarar inmediatamente con abundante agua limpia. A continuación, acuda a un médico. En caso de salpicaduras de ácido en la ropa, lavar con agua.

¡Peligro de inflamación y de explosión, evite cortocircuitos!

• El electrólito es fuertemente corrosivo.

- Los elementos / monoblocs tienen un peso elevado. ¡ Asegurar que quedan instalados de forma segura ¡Emplee siempre los medios apropiados para su transporte.
- Extreme la precaución en su manejo porque son muy sensibles a impactos.

- Las partes metálicas de la batería tienen tensión constantemente, por tanto, no deposite herramientas u objetos sobre el acumulador.
- ¡Atención! Tensión peligrosa.

El incumplimiento de las instrucciones de uso, empleo de recambios no originales, manipulaciones indebidas o uso de aditivos para electrólitos, invalidarán la garantía.

Los residuos de baterías se deben recoger y reciclar de forma separada al resto de los residuos. El proceso a seguir se describe en la directiva sobre baterías de la EU (2006/66/EC) y en su aplicación nacional (España R.D. 106/2008). Contacte con su suministrador para realizar la recogida y el reciclado en la forma adecuada.

1. Puesta en servicio

Compruebe que los elementos / monoblocs no presentan daños mecánicos, que la polaridad es correcta y que los elementos de unión están perfectamente apretados. Use los siguientes pares de apriete:

EnerSol	EnerSol T	OPzS Solar
A-Pol	(M 10)	(M 8)
8Nm ±	25Nm ±1	20Nm ±1

Si procede, instale las cubreconexiones. Rellene al nivel máximo con agua desionizada (DIN 43530 Parte 4). Conecte la batería con la polaridad correcta al cargador (el polo pos. al terminal pos.), con el cargador y consumo desconectados. Conecte el cargador y comience la carga de acuerdo al punto 2.2.

Si hay sólo disponible una fuente de energía alternativa, la batería debe quedar cargada hasta tener todos los elementos la misma tensión y la densidad alcance el valor nominal (ver datos técnicos), el consumo estará desconectado durante la carga. El aislamiento medido con el consumo y el cargador desconectado será al menos de 1MOhm para baterías nuevas. El aislamiento para baterías en funcionamiento será de 1000hm p.v. de tensión nominal (p.e. 24V. =2400Ohm)

2. Funcionamiento

Para la instalación y el funcionamiento de estas baterías es obligatorio aplicar la norma EN

La batería debe trabajar siempre con un control de carga y una protección a descargas profundas.La instalación debe realizarse de forma que

el sol no de directamente y que las diferencias de la temperatura ambiente no superen los 10 °C. La separación entre elementos o blocs debe ser de 10 mm y al menos 5 mm cuando el montaje es en rack.

2.1 Descarga

No se debe prolongar la descarga por debajo de la tensión recomendada para cada tiempo.

Deben evitarse descargas más profundas salvo previo acuerdo con el fabricante. Recargue inmediatamente después de cada descarga, total o

Una batería se considera descargada cuando la densidad de electrólito es < 1.13kg./l a 25 °C. Esto corresponde a un nivel de descarga del 80% del nominal. Una densidad inferior supone una descarga profunda y esto reduce la vida de la batería.

2.2 Carga

a) usando un cargador externo

Se puede cargar según los métodos de carga, con sus correspondientes valores límite, descritos en

DIN 41773 (carga IU),

DIN 41774 (carga W),

DIN 41776 (carga I)

Dependiendo de las especificaciones y características del equipo de carga, se pueden generar unas corrientes alternas superpuestas a la corriente continua de carga que, junto con los efectos de los consumos, pueden provocar un calentamiento adicional de la batería y producir daños (ver punto 2.5), reduciendo su vida.

Durante la carga, la batería estará desconectada del consumo. Al llegar al fin de la carga, la tensión de la batería será de 2.6-2.75V por el número de elementos. El proceso de carga se debe registrar (ver puntos 2.4, 2.5, 2.6). Alcanzado el estado de carga completa, se para el proceso de carga o se cambia a la tensión de carga indicada en la tabla 1. Para las intensidades de carga ver 2.6

b) carga por energía alternativa

Si la fuente de carga son módulos solares o generadores eólicos la fuente de corriente continua no es capaz de suministrar la corriente de consumo máxima en cualquier instante. La corriente de consumo supera intermitentemente la corriente nominal del cargador de la batería. Durante este período, la batería suministra la corriente. Esto hace que no esté plenamente cargada en todo momento, por lo que la tensión de carga debe ajustarse, dependiendo del consumo, entre (2,23-2,35) Vpe \pm 1% x número de elementos (de acuerdo a las instrucciones del fabricante).

Tensión de carga recomendada:

Tipo	Tensión de carga por elemento
EnerSol	2.30V
EnerSol T	2.30V
OPzS Solar	2.28V

Tabla 1

La carga debe ser suficiente para alcanzar el valor nominal (ver datos técnicos) una vez al mes. Si no es el caso será necesario incrementar la tensión de carga (ver tabla 1) o realizar una carga de igualación según 2.4 cada mes.

2.3 Mantenimiento del estado de plena carga (carga de flotación)

Se deben utilizar equipos que cumplan las determinaciones de la norma DIN 41773. Estos deben ajustarse según las indicaciones de la tabla 1 para la tensión media. La densidad del electrólito no debe descender durante un largo período, si es necesario, la tensión de carga se incrementará según la tabla 1.

2.4 Carga de igualación

Debido a la posibilidad de superar las tensiones admisibles de los consumos, se deben tomar las medidas oportunas, como por ejemplo desconectarlos. Se debe dar una carga de igualación tras descargas profundas y/o cargas inadecuadas. Debe realizarse utilizando:

- a) Usando una energía alternativa una tensión de carga constante (máx.) de 2,40 Vpe. hasta 72 horas (el número de horas aumenta para intensidades inferiores según tabla 2).
- b) Usando un cargador externo
 - una tensión de carga constante (máx.) de 2,40 Vpe. hasta 72 horas
 - las curvas I ó W descritas en 2.6.

La temperatura del electrolito no debe nunca exceder de 55 °C. Si lo hace, se debe interrumpir la carga o conmutar a carga de flotación hasta que la temperatura baje. El final de la carga de igualación se alcanza cuando la densidad y la tensión de los elementos no suben más durante al menos 2 horas consecutivas.

2.5 Corrientes alternas superpuestas

Durante una recarga (según 2.2) hasta 2.40 Vpe, el valor de la corriente alterna puede alcanzar ocasionalmente 20A (RMS) por 100 Ah de capacidad nominal.

Cuando la tensión es mayor de 2.4 Vpe, este valor no debe pasar de 10A/100Ah. En estado de plena carga durante el funcionamiento en flotación o en modo en paralelo este valor no debe superar los 5 A (RMS) por 100Ah de capacidad nominal.

2.6 Intensidad de carga

La intensidad de carga no está limitada durante una carga tipo IUo hasta una tensión de 2.4vpe. Superar esa tensión lleva a gaseo, en ese caso la Intensidad de carga, por cada 100Ah. de capacidad, se limita:

Método de carga	EnerSol, EnerSol T OPzS Solar	Tensión elemento
I- constante	5.0A	2.60V- 2.75V
W-	7.0A	at 2.40 V
constante	3.5A	at 2.65V

Tabla 2

2.7 Temperatura

El rango de temperatura recomendado para el funcionamiento de baterías de plomo-ácido es de 10 - 30 °C. Todos los datos técnicos son para una temperatura nominal de 25 °C.

(OPzS Solar 20 °C) La temperatura ideal de funcionamiento es de 25 °C ±5 °C. Temperaturas superiores reducirán la vida útil considerablemente. Temperaturas inferiores disminuirán la capacidad disponible. La temperatura máxima absoluta es 55 °C.

2.8 Tensión de carga según la temperatura

Entre 10 °C y 30 °C no es necesario variar la tensión de flotación. Cuando la temperatura de servicio se encuentre permanentemente fuera de este campo, la tensión de carga debe ajustarse, siendo el factor de corrección de -0.004 Vpe x °C. Si la tª es siempre superior a 40 °C el coeficiente es -0.003 Vpe. x °C.

2.9 Electrólito

El electrólito es ácido sulfúrico diluido. La densidad nominal (± 0.01 kg/l) está referida a 25 °C a nivel máximo y batería plenamente cargada. Temperaturas más altas reducen la densidad del electrólito, y valores de temperatura más bajos la aumentan. El factor de corrección es -0.0007 kg/l por °C.

Ejemplo: una densidad de electrolito de 1.23 kg/l a 35 °C corresponde a una densidad de 1.24 kg/l a 20 °C; una densidad de electrólito de 1.25 kg/l a 5 °C corresponde a una densidad de 1.24 kg/l a 20 °C.

3. Mantenimiento y control de la batería

Compruebe el nivel de electrólito regularmente y rellene con agua destilada (DIN 43530, parte 4 con menos de 30µS/cm) cuando se alcance el nivel mínimo. Mantenga la batería limpia y seca para evitar corrientes de fuga. Los componentes plásticos de la batería, principalmente los recipientes, se limpiarán exclusivamente con agua pura, sin ningún tipo de aditivos.

Al menos cada 6 meses, medir y registrar:

- Tensión de la batería.
- Tensión de varios elementos o monoblocs.
- Temperatura de electrólito de varios elementos o monoblocs.
- Temperatura de la sala de baterías.
- Densidad de electrólito de varios elementos o monoblocs.

Además, anualmente medir y registrar:

- Tensión de todos los elementos o blocs.
- Temperatura del electrólito de todos los elementos o monoblocs.
- Densidad de electrólito de todos los elementos o monoblocs.

Si la tensión de un elemento difiere de la tensión indicada en la tabla 3, realizar una carga de igualación de acuerdo a 2.4. Las tensiones medias de carga se indican en la tabla 1.

	Límite superior	Límite inferior
2V cells	+ 0.2V	- 0.1V
6V blocs	+ 0.17V	- 0.09V
12V blocs	+ 0.24V	- 0.12V

Tabla 3

Control visual anual:

- Uniones atornilladas. Se comprobará que están bien asentadas y su par de apriete.
- Instalación de la batería y la disposición.
- Ventilación.

4. Pruebas

Las pruebas se llevarán a cabo según norma IEC 60896-1. También se tendrán en cuenta instrucciones especiales como VDE 0107 y EN 50172.

5. Anomalías

Contacte inmediatamente con el servicio postventa cuando se detecte alguna anomalía en la batería o en el dispositivo de carga. Los datos registrados según el punto 3 deben estar disponibles. Es recomendable suscribir un contrato de mantenimiento con su agente.

6. Almacenamiento y puesta fuera de servicio

Para almacenar o dejar fuera de servicio los elementos / monoblocs durante un período de tiempo prolongado es imprescindible que se encuentren plenamente cargados y almacenarlos en un lugar seco y frío pero resguardado de heladas, y fuera del alcance de la luz solar directa. Para prevenir daños, elija uno de los siguientes métodos de carga:

- Carga de igualación cada 3 meses según el punto 2.4. Si la temperatura ambiente es superior a la nominal se requerirá una frecuencia mayor.
- 2. Carga de flotación según el punto 2.3.

7. Transporte

Para prevenir cualquier fuga de electrólito, los elementos o monoblocs deben transportarse en posición vertical. Los acumuladores sin daños visuales no están definidos como mercancías peligrosas en virtud de las ordenanzas sobre mercancías peligrosas para el tráfico rodado (ADR) o ferroviario (RID). Deben protegerse contra cortocircuitos, desplazamientos, caídas o daños, y deben ser apilados y asegurados convenientemente sobre pallets (ADR y RID, disposición especial 598). Se prohíbe apilar pallets.

No deben observarse trazas de ácido en los bultos. Los elementos o monoblocs cuyo recipiente esté dañado deben embalarse y transportarse como mercancía peligrosa de clase 8 con n.º UN 2794.

8. Datos técnicos

La tensión nominal, el número de elementos y la capacidad nominal se indican en la placa de identificación. Para otras capacidades (C_n) a diferentes corrientes de descarga (I_n) con sus correspondientes tiempos de descarga y datos adicionales, ver tablas 8.1.1 a 8.1.3.

8.1 Dimensiones, pesos y capacidades (C_n) a diferentes tiempos (tn) y tensiones finales de descarga (U_f)

8.1.1 Monoblocs estacionarios de plomo-ácido EnerSol

placas positivas y negativas planas

			Datos de	Dimensiones y pesos							
		Capacid	ad [Ah]	Intensidad de	descarga [A]	Longitud	Ancho	Alto 1)	Peso	Peso	
Duración de la descarga [h]		120	100 120 100		máx.	máx.	máx.	con ácido	ácido		
Tensión final de descarga [Vpc]		1.85	1.85	1.85	1.85	[mm]	[mm]	[mm]	apróx. [kg]	apróx. [kg]	
EnerSol	50	53	52	0.44	0.52	210	175	190	13.7	2.1	
EnerSol	65	66	65	0.55	0.65	242	175	190	17.3	2.7	
EnerSol	80	80	78	0.67	0.78	278	175	190	20.7	4.7	
EnerSol	100	99	97	0.83	0.97	353	175	190	26.4	7.0	
EnerSol	130	132	130	1.10	1.30	349	175	290	33.0	10.9	
EnerSol	175	179	175	1.49	1.75	513	223	223	47.8	14.6	
EnerSol	250	256	250	2.13	2.50	518	276	242	63.0	18.6	

¹⁾ La altura indicada puede variar según los tapones usados.

8.1.2 Elementos estacionarios de plomo-ácido EnerSol T

placas positivas y negativas planas, Densidad nominal electrolito 1.26 kg/l

			Datos de descarga								Dimensiones y pesos						
			Capacid	ad [Ah]		Int	ensidad de	descarga	[A]	Longitud	Ancho	Alto 1)	Peso	Peso			
Duración de [ł	la descarga n]	120	48	24	10	120	48	24	10	máx.	máx.	máx.	con ácido	ácido			
Tensión final [\	de descarga /]	1.85	1.80	1.80	1.80	1.85	1.80	1.80	1.80	[mm]	[mm]	[mm]	apróx. [kg]	apróx. [kg]			
EnerSol T	370	367	361	333	280	3.06	7.52	13.88	28.0	83	198.5	445	17.3	5.1			
EnerSol T	460	452	437	416	350	3.77	9.10	17.33	35.0	101	198.5	445	21.0	6.3			
EnerSol T	550	542	524	499	425	4.52	10.92	20.79	42.5	119	198.5	445	24.7	7.5			
EnerSol T	650	668	656	625	527	5.57	13.67	26.04	52.7	119	198.5	508	29.5	8.6			
EnerSol T	760	779	766	729	615	6.49	15.96	30.38	61.5	137	198.5	508	31.0	10.0			
EnerSol T	880	897	854	840	714	7.48	17.79	35.00	71.4	137	198.5	556	38.0	11.0			
EnerSol T	1000	1025	1008	960	809	8.54	21.00	40.00	80.9	155	198.5	556	43.1	12.6			
EnerSol T	1130	1154	1134	1080	910	9.62	23.63	45.00	91.0	173	198.5	556	47.7	14.1			
EnerSol T	1250	1282	1260	1200	1011	10.68	26.25	50.00	101.1	191	198.5	556	52.8	15.6			

 $^{^{\}mbox{\scriptsize 1)}}$ Las alturas indicadas pueden variar en función del tapón utilizado.

8.1.3 Baterías estacionarias de plomo-ácido OPzS Solar monoblocs y elementos

placas positiva tubar y negativa plana, Densidad nominal electrolito 1.24 kg/l

Monoblocs

		Datos de descarga									Dimensiones y pesos					
		Capacid	ad [Ah]		Int	ensidad de	descarga	[A]	Longitud	Ancho	Alto 1)	Peso	Peso			
Duración de la descarga [h]	120	48	24	10	120	48	24	10	máx.	máx.	máx.	con ácido	ácido			
Tensión final de descarga [V]	1.85	1.80	1.80	1.80	1.85	1.80	1.80	1.80	[mm]	[mm]	[mm]	apróx. [kg]	apróx. [kg]			
12V OPzS Solar 70	82.7	78.4	69.4	51.5	0.7	1.6	2.9	5.2	275	208	385	35	15			
12V OPzS Solar 140	139.0	141.0	118.0	103.0	1.2	2.9	4.9	10.3	275	208	385	45	14			
12V OPzS Solar 210	210.0	200.0	177.0	154.0	1.8	4.2	7.0	15.5	383	208	385	64	19			
6V OPzS Solar 280	294.0	296.0	250.0	206.0	2.5	6.2	10.5	20.6	275	208	385	41	13			
6V OPzS Solar 350	364.0	374.0	311.0	257.0	3.0	7.8	13.0	25.8	383	208	385	56	20			
6V OPzS Solar 420	417.0	420.0	354.0	309.0	3.5	8.8	14.8	30.9	383	208	385	63	20			

Elementos

OD-C Color	190	100	165	145.0	122.0	1.6	3.4	6.0	13.2	105	200	405	13.7	5.2
OPzS Solar		190	165		132.0			6.0	-		208	405	-	-
OPzS Solar	245	245	215	190.0	173.0	2.0	4.5	7.9	17.3	105	208	405	15.2	5.0
OPzS Solar	305	305	270	240.0	220.0	2.5	5.6	10.0	22.0	105	208	405	16.6	4.6
OPzS Solar	380	380	330	300.0	273.0	3.2	6.9	12.5	27.3	126	208	405	20.0	5.8
OPzS Solar	450	450	395	355.0	325.0	3.8	8.2	14.8	32.5	147	208	405	23.3	6.9
OPzS Solar	550	550	480	430.0	391	4.6	10.0	17.9	39.1	126	208	520	26.7	8.1
OPzS Solar	660	660	575	515.0	469	5.5	12.0	21.5	46.9	147	208	520	31.0	9.3
OPzS Solar	765	765	670	600.0	546	6.4	14.0	25.0	54.6	168	208	520	35.4	10.8
OPzS Solar	985	985	860	770	700	8.2	17.9	32.1	70.0	147	208	695	43.9	13.0
OPzS Solar	1080	1080	940	845	773	9.0	19.6	35.2	77.3	147	208	695	47.2	12.8
OPzS Solar	1320	1320	1150	1030	937	11.0	24.0	42.9	93.7	215	193	695	59.9	17.1
OPzS Solar	1410	1410	1225	1105	1009	11.8	25.5	46.0	100.9	215	193	695	63.4	16.8
OPzS Solar	1650	1650	1440	1290	1174	13.8	30.0	53.8	117.4	215	235	695	73.2	21.7
OPzS Solar	1990	1990	1730	1550	1411	16.6	36.0	64.6	141.1	215	277	695	86.4	26.1
OPzS Solar	2350	2350	2090	1910	1751	19.6	43.5	79.6	175.1	215	277	845	108.0	33.7
OPzS Solar	2500	2500	2215	2015	1854	20.8	46.1	84.0	185.4	215	277	845	114.0	32.7
OPzS Solar	3100	3100	2755	2520	2318	25.8	57.4	105.0	231.8	215	400	815	151.0	50.0
OPzS Solar	3350	3350	2985	2740	2524	27.9	62.2	114.2	252.4	215	400	815	158.0	48.0
OPzS Solar	3850	3850	3430	3135	2884	32.1	71.5	130.6	288.4	215	490	815	184.0	60.0
OPzS Solar	4100	4100	3650	3355	3090	34.2	76.0	139.8	309.0	215	490	815	191.0	58.0
OPzS Solar	4600	4600	4100	3765	3451	38.3	85.4	156.9	345.1	215	580	815	217.0	71.0

¹⁾ Las alturas indicadas pueden variar en función del tapón utilizado.

EXIDE Technologies Pol. Ind. El Pla – C/ Miquel Torelló i Pagés, 34-36 E-08750 Molins de Rei – (Barcelona) España

Tel.: +34 93 680 39 60 Fax: +34 93 680 22 64 www.networkpower.exide.com

CLASSIC.SOLAR_OpInstr_SP. Sujeto a cambios ax72-01